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SUMMARY

This paper describes the development of a semi-Lagrangian computational method for simulating com-
plex 3D two phase �ows. The Navier–Stokes equations are solved separately in both �uids using a
robust pseudo-compressibility method able to deal with high density ratio. The interface tracking is
achieved by the segment Lagrangian volume of �uid (SL-VOF) method. The 2D SL-VOF method
using the concepts of VOF, piecewise linear interface calculation (PLIC) and Lagrangian advection of
the interface is herein extended to 3D �ows. Three di�erent test cases of SL-VOF 3D are presented for
validation and comparison either with 2D �ows or with other numerical methods. A good agreement is
observed in each case. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The importance of free-surface �ows or more generally two-phase �ows in recent research
and industrial applications has led to the elaboration of improved numerical techniques. The
numerical simulation of two phase �ows with sharp interfaces requires simultaneous solu-
tion of the Navier–Stokes equations in the two �uids together and tracking of the interface
kinematics. Di�erent kinds of interface tracking methods have been developed [1]. We made
the choice to develop a VOF approach because of its ability to represent complex deforma-
tion of an interface including reconnection, on the contrary of other accurate classical meth-
ods such as Lagrangian–Eulerian methods (ALE) [2] or boundary integral elements methods
(BIEM) [3].
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The volume of �uid (VOF) concept has been initially introduced by Hirt and Nichols [4]
through the SOLAVOF algorithm. In the original method, the interface was characterized by
the fraction of the grid cell occupied by the denser �uid and was represented by segments
(or planes in 3D) imposed to be parallel to the grid faces. The standard VOF method is very
easy to use and to extend to 3D computations but has a zero order accuracy.
For this reason, several authors have improved the primitive VOF concept. For instance,

Li [5] proposed the well known piecewise linear interface calculation method (PLIC) which
allows to represent the interface by segments (or planes in 3D) of any direction in each cell.
The evolution of the interface is then performed with an advected �ux algorithm which must
verify a stability criterion of CFL type and so imposes a limitation of the time step of the
simulation.
We present hereafter the 3D extension of the recently developed 2D SL-VOF method [6].

This new VOF approach uses the PLIC concept for the segmental (or planar) representation of
the interface in combination with a Lagrangian time scheme driving the segments (or planes)
advection. The SL-VOF method allows on one hand to increase the accuracy of the standard
VOF algorithm and on the other hand to reduce the computational time by using a larger
time step (CFL greater than one), whereas the classical PLIC method is unable to use CFLs
greater than 0.5. After introducing the Navier–Stokes solver (CFD EOLE code developed by
PRINCIPIA R&D), we give a brief review of the principles of SL-VOF method for 2D �ows.
Then we present the full 3D SL-VOF method and several academic examples of application:
advection of a sphere in an horizontal velocity �eld, advection of a sphere in a distorting
velocity �eld and the Rayleigh–Taylor instability.

2. THE NUMERICAL PROBLEM

2.1. Formulation

We consider two incompressible viscous �uids of di�erent densities, separated by a mov-
ing interface. The e�ect of the surface tension is not taken into account for the academic
applications considered here.
The unsteady 3D Navier–Stokes equations for the two phase �ows are then written in the

following semi-conservative form, in curvilinear formulation:
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where F , G and H are the �ux terms and R the volumic forces source term:
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ũ= �xu+ �yv+ �zw; ṽ= �xu+ �yv+ �zw; w̃= �xu+ �yv+ �zw; J =
@(�; �; �)
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�̃x= ��� · ẽx �̃y= ��� · ẽy �̃z= ��� · ẽz ���=�(∇̃Ũ + ∇̃tŨ )

with (�; �; �) the curvilinear co-ordinates, J the Jacobian of the co-ordinates transformation,
and n=(nx; ny; nz) the normal vector to the interface. Additionally, (u; v; w) are the cartesian
velocity components for each phase, (ũ; ṽ; w̃) the contravariant velocity components, p the
pressure, � the density, � the molecular viscosity and ��� the viscous stress tensor.

2.2. The pseudo-compressibility method

Time discretization is ensured using a fully implicit second order scheme. The solution of the
non-linear system for the unknown values at step n+1 is based on the pseudo-compressibility
method [7, 8] using the following concept: introducing a time-like variable �, called pseudo-
time, in Equation (1), one adds pseudo-unsteady terms which are derivatives of the unknowns
at time level n+ 1 with respect to �. Considering the semi-discretized equations at the time
level n+ 1, the system is written:
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with
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

The pseudo-density terms involve a new unknown �̃, called pseudo-density, which is imposed
to remain positive. The pressure is calculated as a function of �̃ through an additional pseudo-
state equation:

pn+1 =f(�̃n+1) (3)
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The choice of the optimized pseudo-state equation is discussed in Viviand [7]. The system
(2,3) is integrated step-by-step in pseudo-time variable, up to the convergence towards the
numerical solution at time level n + 1. This system is hyperbolic with respect to � and is
formally very close to Navier–Stokes equations for compressible �ows, due to the presence
of the same unknown �̃ in the continuity and momentum equations. The spatial discretization
is ensured with an adaptation of the �nite volume method on multi-block curvilinear deform-
ing grids, using a centred scheme with arti�cial viscosity (this procedure allows to avoid
uncoupling between odd and even cells) [9].
The scheme used in pseudo-time is the explicit �ve steps Runge–Kutta scheme, associated

with an implicit residual smoothing technique. The maximum value of the pseudo-time step
is �xed by the local CFL stability criterion. For each cell, one uses the maximum local value
(local time step technique). The method is unconditionally stable with respect to the physical
time step. Finally this method is especially robust to deal with two phase �ows exhibiting a
high liquid–gas density ratio.

3. SL-VOF: INTERFACE TRACKING METHOD

For each time step the interface and its evolution are obtained by an original method, called
SL-VOF [6], based on both VOF and PLIC [5] concepts. In each cell, the interface is rep-
resented by a discrete function C, the value of which is the volumic fraction of the denser
�uid (VOF concept).
The general SL-VOF algorithm contains three main parts, namely the interface modelling,

the interface advection and the reconstruction of the new VOF �eld, deduced from the interface
location after advection. This procedure can be summarized by the following scheme:

Time iteration

C(tn) 

PLIC  
Modelling for the 

interface 

Interface 
advection 

Computation of 
C(tn+1) 

The used curvilinear formulation allows us to deal with a transformed mesh of unit cartesian
cells (unit squares for the 2D method or unit cubes for the 3D method). In the next sections,
only unit cells will be considered for the method description.
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Figure 1. PLIC modelling of the interface: (a) Values of C in each cell and (b) PLIC model.

3.1. SL-VOF method for 2D �ows

3.1.1. Interface modelling. In the original SOLAVOF [4] method, the interface was assumed
to be parallel to the grid faces, so the accuracy of the method remained low. The �rst order
PLIC method allows the interface to be represented by segments of any orientation. To de�ne
a unique segment in each cell, two parameters are necessary:

• the VOF value in the grid cell and
• the normal to the interface in the cell

The VOF �eld is kept from the last time step, so it is only necessary to de�ne the normal
direction to the segment. As shown in Figure 1, the normal n to the interface is de�ned as
−∇̃C=‖∇̃C‖. From this de�nition, the normal is oriented from the denser to the less dense
�uid. Thus, it is possible to represent the interface by a segment normal to n whose position
is translated in order to satisfy the value of C in this cell. This representation does not
ensure a continuous representation of the interface as a continuous linear interface would not
satisfy the cells volume fraction. The co-ordinates of −∇̃C are computed using an eight point
�nite-di�erences discretization:

nx =
1
8hi

[2(Ci+1; j − Ci−1; j) + Ci+1; j+1 − Ci−1; j+1 + Ci+1; j−1 − Ci−1; j−1]

ny =
1
8hj

[2(Ci; j+1 − Ci; j−1) + Ci+1; j+1 − Ci+1; j−1 + Ci−1; j+1 − Ci−1; j−1]

with (hi; hj) the local space discretization steps.
Once the normal direction is known, the segment has to be translated in the cell in order

to respect the value of C. The segment is the line of equation: nxx+ nyy= �, where � is the
parameter to be adjusted. Let us consider a unit cell whose origin is in (0; 0). By symmetry,
it is always possible to consider that 0¡nx6ny. The segments of normal directions (nx; ny)
intercepting the points (1; 0) or (0; 1) generate 2 critical volumic fractions: C1 = nx=2ny and
C2 = 1− C1 (see Figure 2).
Then, there are three di�erent possible expressions for � depending on the value of C:

• if 06C6C1 then �=
√
2Cnxny
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C1

C2

(0,0) (1,0)

(1,1) (0,1) 

Figure 2. Critical volumic fractions.

Figure 3. Advection of the segments (the arrows represent the velocity vectors).

• if C1¡C¡C2 then �=(2Cny + nx)=2
• if C26C61 then �= nx + ny −

√
2(1− C)nxny

Now, the equation of the segment is determined and it is possible to translate it correctly in
the cell.

3.1.2. Interface advection. The displacement of the segments is computed in a Lagrangian
way. The velocities at the ends of the segments are deduced from the general velocity �eld
computed by the solver by a bilinear interpolation. The ends of the segments are then advected
using a �rst-order Lagrangian scheme:

x(t +�t) = x(t) +�t · u
where x denotes the position of the ends of the segments, �t the time step and u the velocity
at the ends of the segments. The advection step is described in Figure 3.

3.1.3. Computation of Cn+1. As previously stated, due to the Lagrangian nature of SL-VOF
method, there is no need to solve a conservation equation of the VOF function. So, one
of the advantages of this new method in comparison to the former PLIC method and the
original SOLAVOF algorithm, is to be able to use larger time steps. Considering the quantity
CFLvof to be the maximum value of the ratio of the displacement of a �uid element at the
interface during a time step to the maximum size of this cell, the earlier VOF methods were
limited by the stability criterion CFLvof¡0:5 [4, 5, 10]. The SL-VOF method has no theoretical
constraint about the CFLvof criterion, which allows for a signi�cant earn in computational time.
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Moreover, recently an implicit procedure has been implemented: the interface is activated
during the pseudo-time iterations (not only at the end of the pseudo-time iterations), which
allows to increase the global CFL, and to reduce once more the computational time.
This step describes the computation of the new VOF �eld. In contrast to the original PLIC

method [5] which uses a multi-step �ux calculation to compute the value of Cn+1, SL-VOF
deduces Cn+1 from the new positions of the segments after advection unstead of solving the
VOF transport equation. Numerical experiments have shown that even for complex interfaces,
the volume conservation defect is not found critical enough (see Plate 3) to justify a fully
VOF conservative procedure when the interface advection accuracy has been shown to be
more important [6].
For this purpose, markers are uniformly dispatched on each segment. To each marker Mi

is associated the normal vector ni of the segment to which it belongs. Then, after advection,
there are two possible kinds of cells:

• A type cells containing at least one marker and
• B type cells without any marker

Let us consider an A type cell (Figure 4). To the marker Mi corresponds a value Ci calculated
according to the PLIC concept (cf. Figure 4(a)). As there are several portions of segments in
the cell, it is necessary to determine if the cell is becoming full (reconnection of interfaces)
or not. To determine this, a test is made on the value of the scalar product prij= ni ·nj, where
i and j describe the markers present in the cell. If all the prij are positive then the new value
of the VOF will be a mean value of the Ci’s in the cell, to which is added or subtracted the
areas of the additional polygons (Figure 4(a)).
If at least one prij is negative, it means that a reconnection of interfaces could occur in

the cell. Segments could cross each others so that the cell is becoming full of liquid. It is the
case if the sum of the Ci’s is more than 1, and Cn+1 is then imposed to be 1 (Figure 4(b)).
If the sum of the Ci’s is less than one, Cn+1 is computed in the same way as previously.
Let us now consider a B type cell (Figure 5). There are again two possibilities: either the

cell did not contain any segment before the advection of the interface, and so the value of C
is not modi�ed, or the cell has lost the interface during the time step. In this case, one has
to detect whether the cell becomes empty or full of the denser �uid, after advection. A test
is made on the value of pr= n · d where d is the displacement of the centre of the segment
during advection. The cell is �xed full if pr¿0 and empty if not (Figure 5).

3.2. SL-VOF method for 3D �ows

The extension of SL-VOF for 3D �ows is presented hereafter. The basic ideas remain the
same, but the geometrical feature becomes more complex.

3.2.1. Interface modelling. In 3D con�guration, the segments become portions of planes. An
unique portion of a plane is de�ned by the normal direction and the VOF value in the cell.
The calculation of the normal interface at the centre of a cell (i; j; k) is carried out consid-

ering the two following steps:

• a �nite-di�erence scheme is �rstly used to compute the normal vectors at each corner of
the cell (i; j; k). For instance, the normal vector at the corner de�ned by
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S1 

S2 

M1

C1 

M2

C2 
C=(C1+C2)/2
+ A(T)

Additional 
polygons added to 
the mean value of 
C1 and C2 

n=(n1+n2)/2

C = 1 

Fluid 

Fluid 

(a)

(b)

Figure 4. (a) Computation of Cn+1 for an A type cell with two segments (no reconnection) S1 de�nes
C1, S2 de�nes C2, C is the mean value of C1 and C2 plus the areas of the additional triangles; (b)

Computation of Cn+1 for an A type cell with two segments (reconnection).

Normal to the 
interface after 
advection 

Initial interface 

Displacement of 
the center of the 
segment 

C=1

Figure 5. Computation of Cn+1 for a B type cell case d · n¿0.
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(1,1,0) 
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Figure 6. Cut cube.

(i + 1=2; j + 1=2; k + 1=2) will be:

ñ
i+12 ; j+

1
2 ; k+

1
2
=
x̃
4h

1∑
s; t=0

(Fi+1; j+s; k+t − Fi; j+s; k+t) + ỹ
4h

1∑
s; t=0

(Fi+s; j+1; k+t − Fi+s; j; k+t)

+
z̃
4h

1∑
s; t=0

(Fi+s; j+t; k+1 − Fi+s; j+t; k)

In the same way, the normal vector is computed in the other corner of the cell (i; j; k).
• the normal vector n (nx; ny; nz) at the centre of the cell (i; j; k) is then the mean value
of the eight normal vectors at the corners.

Once the approximation of n is known, the plane has to be translated in the cell in order to
satisfy the VOF function C in this cell. The equation of the plane is given by

nxx + nyy + nzz= �

where � is the unknown parameter. By symmetry, it is always possible to obtain that 0¡nx¡
ny¡nz (=1). The volume of the cut cube generated by the plane increases from 0 to 1 when
� increases from 0 to nx+ny+nz. In 3D, it is necessary to distinguish eight cases [5] for the
expression of the volume portion of the cube when cut by a polygon: six cases corresponding
to a critical situation where the plane contains one corner of the cube and two additional
particular cases (Figure 6) where the plane is �rst intercepting the corner (1; 1; 0) and then
the corner (0; 0; 1) (nx + ny¡nz), and the opposite situation (nx + ny¿nz).
The six critical volumic fractions (i.e. the volumes corresponding to the cut cubes by the

plane intercepting one corner) depend on the sign of nx + ny − nz. This can be summarized
by the following chart.

Critical volumic fractions depending on the normal orientation

C1 C2 C3 C4 C5 C6

nx + ny¡nz
1
6
n2x
ny

3n2x − 3nxny + n2y
6nxny

1
2
(nx + ny) 1-C3 1-C2 1-C1

nx + ny¿nz
1
6
n2x
ny

3n2x − 3nxny + n2y
6nxny

1
6nxny

(1− (1− nx)3 − (1− ny)3) 1-C3 1-C2 1-C1

The classi�cation of the geometrical shapes of the cut cubes allows to determine the shape of
the polygon de�ned by the intersection of the plane and the cube. This polygon can have from
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Normals to the 
triangles subdivision 

P1 

P2 

P3 

P4

Pm
Polygons 
corners after 
advection 

Pm 

nm
Mean plane to 
the corners after
advection 
(nm: mean 
normal, Pm : 
mean point) 

Cells after advection 

Cells with at least one polygon 
portion at tn+1 (A type cells) 

Cells without any polygon 
portion at t n+1 (B type cells) 

Cells with an interface at tn Cells without interface at tn 

A Type cell process

Different polygons portions

Set of points (defining the polygon corners after advection) 

Computation of the mean normal to the set of points

Mean plane to each set of points defining a polygon portion 

Unique plane defined as the mean plane to each polygon plane portion 
(weighted with the area of the polygons surfaces) 

(a) (c)

(b) (d)

Figure 7. (a) Calculation of a mean plane to non-coplanar corners after advection; (b) General classi�ca-
tion of the cells after advection; (c) General procedure for an A type cell; and (d) De�nition of the mean

plane for two polygons portions.

3 to 6 corners. Following the cases, it is possible to �nd the expression of � as a function of
n and C (see Appendix A). An unique interface is then de�ned by this polygon.

3.2.2. Interface advection. The principle of the advection remains the same than for the 2D
case. The velocities of the polygon corners are deduced from the velocity �ow �eld, computed
at the centre of the cells, using a bilinear interpolation. A �rst order in time Lagrangian scheme
is then used to advect the corners. The main problem is that these points are not coplanar
after advection, so it is necessary to de�ne a mean plane deduced from this new set of points.
This mean plane is de�ned in �rst order as the plane containing the centre of this set of points
and whose normal is the mean of the normals to the triangles built with two consecutives
points of the set of points and the mean point of the set, as shown in Figure 7(a).
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A last point is the computation of the normal sense associated to each triangle after advec-
tion by respect to grad(C)=norm (grad(C)).

3.2.3. Computation of Cn+1. After the advection step, several portions of polygons are present
in each cell. The intersections of each polygon with the cell are computed. The mean plane
for all the portions of polygon occurring in a cell has to be computed. This mean plane is
�xed by a mean point and a mean normal vector, which are respectively the mean values of
the centres and the normals of the polygons portions weighted by the area of the portion in
the cell. An unique plane for the interface is then de�ned in each cell. The new VOF value
Cn+1 is then �xed as the volume of the cut cube de�ned by the intersection of this mean
plane and the cube. This volume is computed with the formulae given in Appendix A. The
situation remains the same that for 2D SL-VOF method when a cell looses the interface.
The general classi�cation of the cell types after advection is presented herafter in Figure 7(b).
Figures 7(c) and 7(d) summarize the process for an A type cell.

4. BOUNDARY CONDITIONS FOR FREE SURFACES AND INTERFACES

A moving �uid boundary can be considered in two ways:

(i) If the e�ect of the less dense �uid (for instance air or gas) is neglected, it is not
necessary to compute the �ow in this �uid and the interface becomes a free surface.
So the pressure at the interface (in the partial cells with 0¡C¡1) is the constant gas
pressure and the velocity is deduced by extrapolation of the velocity in the neighbouring
cells, taking into account the weight of each cell (C value):

Ũi; j; k =

∑∑∑
(l1=i−1; i+1); (l2=j−1; j+1); (l3=k−1; k+1)

Cl1; l2; l3Ũl1; l2; l3∑∑∑
(l1=i−1; i+1); (l2=j−1; j+1); (l3=k−1; k+1)

Cl1; l2; l3

where Ũl1; l2; l3 is the velocity in the neighbouring cell (l1; l2; l3) and Ũi; j; k is the velocity
in the cell interface (i; j; k).

(ii) If the coupling between air (or gas) and liquid is taken into account, the boundary is an
interface. In this case, the Navier–Stokes equations are solved in the two �uid but also
in the partial cells of interface taking account of physical local behaviour. This allows
to compute more precisely the physical �elds than with the single phase solver. This 2
�uid �ow model does not need any particular boundary conditions on the cell’s interface
because the physical �elds are also computed in the cells containing an interface.

5. VALIDATION OF SL-VOF 3D

5.1. Kinematics validation: advection of the sphere

5.1.1. Advecting a sphere in an uniform velocity �eld. A �rst basic test is carried out in order
to verify the SL-VOF model. We consider the advection of a sphere in an uniform, constant,
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592 B. BIAUSSER ET AL.

0

10

20

30

Z

0
20

40
60

80
X

0

10

20

30

Y

Y

X

Z
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Figure 8. Advection of a sphere (t=0s and 40s). The identity of the sphere is extremely well maintained.

horizontal velocity �eld of one cell per time step. This test case is interesting because the
interface position will get all possible di�erent orientations.
The grid contains 80× 30× 35 cells of constant size in the three directions. The radius of

the sphere is 10 cells long. Figure 8 shows the initial C �eld which draws the position of the
interface (0¡C¡1) and the C �eld at t=40 s (time step=40) after advection by SL-VOF.
Plate 1(a) shows the interface shape in the symmetric plane of the advection. We can observe
the satisfying conservation of the interface shape during the advection even for a coarse mesh.
The tests for di�erent velocities (CFL) and di�erent directions of the �ow give similar

results. The volume of the �uid is conserved with less than 10−3% of error.

5.1.2. Estimation of the method’s order. In order to estimate the order approximation of the
method, we consider the advection of a sphere in a diagonal direction (i.e. the direction (1; 0; 1)
for example) for di�erent radii of the sphere. The error estimation can be tested in two ways,
either the mesh is progressively re�ned and the radius of the sphere remains the same, or
the mesh is �xed and the radius of the sphere is progressively increased. The second solution
is chosen for simplicity. We will consider the mean error, de�ned as E1 =

∑
k Errk =R · ncorner

with Errk the distance between the k polygon corner and the real interface, ncorner the total
number of corners and R the radius of the sphere. The order � of the method is the value
� ∈ R so that: E1 = �(h)�, � ∈ R with h the cell size. Here, it is equivalent to look for � ∈ R
so that ln E1 = ln �− � ln(R). Plate 1(b) presents the mean error as a function of the radius
(for seven di�erent radius from 2 to 30) in a log=log diagram. A linear regression gives the
mean slope, that is to say the order of the method. A slope of −1:65 is found. If the advection
phase is supposed to be exact, the algorithm accuracy is estimated of order 1.65.
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Figure 9. Scheme of the 2D computational domain for the distorting velocity �eld.

5.1.3. Sphere advection in a distorting velocity �eld. We propose here to check the ability of
SL-VOF to reproduce distorted interfaces. Let us �rst consider the 2D potential �ow generated
by a solid wall perpendicular to the main direction of the �ow far from the wall (see Figure 9).
If A(xa; ya) is the stagnation point where the velocity is equal to zero on the wall, one can
show that the stream function of such a �ow is �(x; y)=2a(x−xa)(y−ya) with a a constant
(we will take a=10 for this application). Then:

dx(t)
dt

= u(x)=2a(x − xa)

dy(t)
dt

= v(y)=2a(ya − y)

If we consider the particles of �uid which belong to the circle of centre (xa; yc0) and of radius
R0 for t=0, one can prove that the co-ordinates x(t), y(t) of the particles at time t verify:
(x(t)−xa)
e4at +(y(t)−yc(t))

e−4at =R20 with yc(t) the ordinate of the particle located at the centre of the circle
for t=0. Then, in such a �ow, circles are distorted progressively into ellipses of centres xa,
yc(t) and of axis R0e2at and R0e−2at . We will consider a (100× 100) computational domain.
If we propagate this domain and the �ow in the direction perpendicular to the plane (Oxy),
we obtain a 3D computational domain with the same velocity �eld in each plane parallel
to (Oxy). The advection of a sphere in such a �ow provides ellipsoids of revolution whose
analytical solution is known. We will compare then this analytical solution with the numerical
solutions provided by both the standard VOF algorithm of Hirt and Nichols and our SL-VOF
algorithm. The computational domain is (100,30,100) (i.e. the 2D �ow in the plane Oxz is
propagated over the y direction). The radius of the initial sphere is 13, and its centre is
(50,15,20). In Plate 2, the velocity �eld in one y-slice is presented. In Figures 10(a) and
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Figure 10. (a) Advection of a sphere in a distorting velocity �eld: impinging jet on the top wall; and (b)
advection of a sphere in a distorting velocity �eld.
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Figure 10. Continued.
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Figure 12. 3D Rayleigh–Taylor instability (evolution of the interface).
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10(b) the VOF contours computed using SL-VOF for di�erent time steps of the simulation
are shown.
It is easy to compare the analytical and the numerical solutions in the mid-plane y=15. In

Plate 3 the analytical solution, the numerical solution computed by SL-VOF and the numerical
solution computed by the original VOF algorithm of Hirt and Nichols are shown.
The solution computed by SL-VOF is very close to the analytical solution, by contrary to

the Hirt and Nichols algorithm solution which is not able to accurately describe the ellipsoid’s
extremities. This is one of the advantages of the PLIC model as compared to the SLIC one:
when the curvature of the interface is increasing, the SLIC model requires a high number
of cells to describe the interface. Moreover, the Lagrangian advection allows to use high
CFL numbers whereas the �ux advection proposed in the Hirt and Nichols algorithm forbids
CFL greater that 0.5. For this simulation, SL-VOF is �ve times faster than the original VOF
method. The maximal error observed on the position of the interface is about half a cell with
SL-VOF for �ve cells with the original VOF method. Figure 11 shows the interface contours
computed for the same time by SL-VOF and the original VOF method.

5.2. Dynamics validation: Rayleigh–Taylor instability

We now consider the Rayleigh–Taylor instability test case which is characterized by a complex
�ow problem with a highly non-linear interface shape evolution. A number of authors have
been interested by this �ow (see References [6, 11–13] for example).
We consider two inviscid �uids of di�erent densities superposed in a cylindrical tank of

6 cm height and 2 cm radius. The �uid densities are 1 for the lower �uid and 2 for the
upper �uid. The Navier–Stokes equations are solved in the two �uids. The surface tension is
neglected.
The cylindrical mesh is of 40 ∗ 40 ∗ 90 cells.
An initial plane interface is imposed in the middle height of the cylindrical tank (Plate

4). The initial perturbation of the interface is imposed by a sinusoidal velocity perturbation
characterized by a maximal velocity (W =−1 m=s) on the symmetrical axis of the tank, a
minimal velocity near the wall (W =0) and a wavelength =0:02 m.
The interface evolution between the two �uids for four di�erent times (0.22, 0.44, 0.66 and

0:88 s) is given in Figure 12. Only half of the domain is shown.
The geometrical symmetry of the interface is observed to be satis�ed.
It is interesting to compare this 3D simulation with an axisymmetric simulation of the same

Rayleigh–Taylor instability carried out with the SLVOF 2D model.
Plates 5 and 6 show, respectively, the evolution of the interface, at the same times, for

the 3D simulation (on a meridian symmetrical plane, the red rectangle on Plate 4) and for
the 2D simulation. The red �uid is the denser one. A very good agreement between the two
simulation is observed.

6. CONCLUSION

The extension of the newly proposed 2D SL-VOF numerical method for interface tracking
to 3D �ows has been performed. Several test cases like advection of a sphere and fully
3D Rayleigh–Taylor instability have been successfully computed. The comparisons with both
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original VOF method and SL-VOF method for 2D �ows have shown that SL-VOF 3D is able
to simulate complex two-phase �ows with �rst order accuracy for signi�cant deformations of
the interface. PLIC modelling and Lagrangian advection allows to increase both accuracy and
time steps. Advecting a sphere in a distorting velocity �eld shows that SL-VOF method is at
least �ve times faster than the basic VOF method of Hirt and Nichols. The large computational
time required for 3D simulations is then reduced. The order of the method being about 1.65,
the accuracy is highly improved when great deformations of the interface occur. The accuracy
and the capability to represent complex interfaces of SL-VOF 3D will allow to use the method
in a near future for coastal applications, such that wave breaking and sedimentary transport,
where large deformations of the interfaces occurs. The next developments of the method will
lead on the coupling with a BIEM method, in order to decrease once more computational
times, and on the involvement of a subscale turbulence model in order to describe precisely
the small structures for high Reynolds numbers.

APPENDIX: A TRANSLATION OF THE PLANES IN THE GRID CELLS AS A
FUNCTION OF THE VOF AND THE NORMALS (CALCULATION OF �)

A.1. Geometric con�guration

Let us consider the cube ABCDEFGH (Figure A1) of sides AB=AH=AD=1. A cartesian
reference system of origin A is linked to the cube. The cube is intersected by the plane IJK. Let
us note (n;m; l) the normal to the plane. The equation of the plane is then: mx1+nx2+lx3 = �.
Moreover: AI= �=m, AJ = �=n and AK= �=l. With a view to determine the volume under the
interface, i.e. the volume ABGHLMNK, one begins by �nding the volume of the tetrahedron

H 
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K
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P 

J M
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x1 
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x3

L 

Figure A1. Cut cube by the plane describing the interface.
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AIJK, which is: �3=6mnl. Then, it is necessary to subtract the volumes of the exterior tetrahe-
drons (HIPL and BOJN in Figure A1). Those tetrahedrons are geometrically similar to AIJK,
and the ratios of their volume to the volume AIJK are (1−m=�)3 and (1−n=�)3, respectively.
One has then to consider that the volume of GOPM is subtracted twice (if the segment IJ
is not included in the rectangle ABGH), so that the volume of GOPM has to be added to
the �nal result. One can show that the ratio of the volume GOPM to the volume AIJK is
(1−m=� − n=�)3. Moreover, if the point K is located above the point D on the axis (O; x3),
the volume of the tetrahedron intercepting K and D above the cube has to be subtracted too:
the ratio of this tetrahedron’s volume to the volume AIJK is then (1−l=�)3. It is now possible
to determine the volume of the cut cube.
Several cases has to be examined. One can remark that when � increases from 0 to n +

m+ l, the volume increases from 0 to 1. The expression of the volume depends then on the
geometrical shape of the cut cube. When � increases from 0 to m+n+ l, the plane intercepts
six corners successively. This corresponds to six di�erent shapes of the cut cube and then to
six di�erent expressions for the volume.

A.2. Calculation of the critical volumic fractions

The order in which the plane intercepts the corner (1; 1; 0) and the corner (0; 0; 1) depends
on the comparison between m+ n and l. Two cases have to be examined:

• case m+ n¡l, i.e. the corner (1; 1; 0) is intercepted before the corner (0; 0; 1),
• case m+ n¿l, i.e. the corner (0; 0; 1) is intercepted before the corner (1; 1; 0).

A.2.1. Case: m+ n¡l. Hereafter are the six con�gurations corresponding to the six critical
volumes.
Let us determine the six critical volumes of those con�gurations.
(1◦) Volumic fraction C1 (case (a) in Figure A2): In this case, the plane intercepts the

point (1; 0; 0), so that �=m. The volumic fraction of the cut cube is here the volume of AIJK
because the points I and J are inside the cube. Thus, C1= �3=6mnl and:

C1=
m2

6nl

(2◦) Volumic fraction C2 (case (b) in Figure A2): In this case, the plane intercepts the
point (0; 1; 0), so that �= n. The volumic fraction of the cut cube is here the volume of AIJK
to which is subtracted the volume of HIPL. Thus, C2= (�3=6mnl)[1− (1−m=�)3]. And:

C2=
3n− 3nm+m

6nl

(3◦) Volumic fraction C3 (case (c) in Figure A2): In this case, the plane intercepts the
point (1; 1; 0) so that �=m+ n. The volumic fraction of the cut cube is here the volume of
AIJK to which is subtracted the volumes HIPL and BOJN.
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Figure A2. Critical volumes in the case m+ n¡l.

Thus, C3= (�3=6mnl)[1− (1−m=�)3 − (1− n=�)3]. And:
C3= (m+ n)=2l

(4◦) Volumic fractions C4, C5 and C6 (cases (d), (e), (f) in Figure A2): The volumic
fractions C4, C5 and C6 are deduced from C1, C2, C3 by symmetry. Thus:

C4= 1− C3

C5= 1− C2

C6= 1− C1

A.2.2. case: m+ n¿l. Hereafter are the six volumic fractions corresponding to this case.
In this case, the critical volumic fractions corresponding to (g) and (h) in Figure A3 are

calculated in the same way that for the case m+ n¡l. Thus:

C1=
m2

6nl

C2=
3n2 − 3nm+m2

6nl
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Figure A3. Critical volumes in the case m+ n¿l.

For the case in (i) in Figure A3, the plane intercepts the point (0; 0; 1), so that �= l. The
volumic fraction is the volume AIJK to which is subtracted the volumes HIPL and BOJN.
Thus:

C3=
�3

6mnl

[
1−

(
1− m

�

)3
−
(
1− n

�

)3]

=
1

6mnl
[l3 − (l−m)3 − (l− n)3]

And:

C3=
1

6mnl
[l3 − (l−m)3 − (l− n)3]

C4, C5 and C6 are deduced by symmetry:

C4= 1− C3

C5= 1− C2

C6= 1− C1
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A.3. Calculation of � and shape of the intersection polygon

A.3.1. Case m+ n¡l

• If 0¡C¡C1 (i.e. 0¡�¡m), the intersection polygon is here a triangle of corners
(�=m; 0; 0), (0; �=n; 0) and (0; 0; �=l). Moreover, the volume is in this case C= �3=6mnl.
Thus:

�= 3
√
6Cmnl

• If C16C¡C2 (i.e. m6�¡n), the intersection polygon is here a quadrilateral of corners
(0; 0; �=l), (1; 0; (� − m)=l), (1; (� − n)=l; 0) and (0; �=n; 0). Moreover, the volume is in
this case:
C= 1

6mnl [�
3 − (�−m)3]. Thus:

�2 −m�+ m
2

3
− 2nlC=0

Only the root m+
√
8nlC − (m2=3) corresponds to the criterion m¡�, thus:

�=m+

√
8nlC − m2

3

• If C26C¡C3 (i.e. n6�¡m + n), the intersection polygon is a pentagon of corners
(1; 0; (� − m)=l), (1; (� − m)=n; 0), ((� − n)=m; 1; 0), (0; 1; (� − n)=l) and (0; 0; �=l). The
volume is in this case: C=(1=6mnl)[�3 − (�−m)3 − (�− n)3]. Thus:

−�3 + 3(m+ n)�2 − 3(m2 + n2)�+m3 + n3 − 6mnlC=0

This equation is solved numerically by a bisection method. The right root is the one
corresponding to the criterion n6�¡m+ n.

• If C36C¡C4 (i.e. m + n6�¡l), the intersection polygon is a quadrilateral of
corners (1; 0; � − m=l), (1; 1; � − m − n=l), (0; 1; � − n=l) and (0; 0; �=l). The volume is:
C=(1=6mnl)[�3 − (� − m)3 − (� − n)3 + (� − m − n)3], expression which reduces to:
C=(1=l)(�− (m+ n)=2), so that:

�=
1
2
(2Cl+m+ n)

All the others cases are found by symmetry.

A.3.2. Case m + n¿l. For the �rst three cases, the formulae are the same that previously.
It is to say:

• If 0¡C¡C1 (i.e. 0¡�¡m), the intersection polygon is a triangle de sommets
(�=m; 0; 0), (0; �=n; 0) and (0; 0; �=l), so:

�= 3
√
6Cmnl
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• If C16C¡C2 (i.e. m6�¡n), the intersection polygon is a quadrilateral of corners
(0; 0; �=l), (1; 0; (�−m)=l), (1; (�− n)=l; 0) and (0; �=n; 0), so:

�=m+

√
8nlC − m2

3

• If C26C¡C3 (i.e. n6�¡l), the intersection polygon is a pentagon of corners (1; 0; (�−
m)=l), (1; (� − m)=n; 0), ((� − n)=m; 1; 0), (0; 1; (� − n)=l) and (0; 0; �=l). � is calculated
by solving the equation:

−�3 + 3(m+ n)�2 − 3(m2 + n2)�+m3 + n3 − 6mnlC=0

On the other hand, if C36C¡C4 (i.e l6�¡m+n), the formula is di�erent. In this case, the
intersection polygon is a hexagon of corners (1; 0; (�−m)=l), (1; (�−m)=n; 0), ((�−n)=m; 1; 0),
(0; 1; (� − n)=l), (0; (� − l)=n; 1) and ((� − l)=m; 0; 1). The volume is here C= 1

6mnl [�
3−

(�−m)3 − (�− n)3 − (�− l)3]. Then:
−2�3 + 3(m+ n+ l)�2 − 3(m2 + n2 + l2)�+m3 + n3 + l3 − 6mnlC=0

This equation is solved, and the right root is the one satisfying l6�¡m+ n.
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